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The Art of Electrophysiological Modeling

John C. Mosher, Los Alamos National Laboratory

Magnetoencephalography (MEG) measures the extremely weak quasistatic
magnetic field outside the scalp generated by neural activity within the
brain; electroencephalography (EEG) measures the scalp potentials from
the same activity. The forward problem is the calculation of the
external fields given an elemental source within the brain, for which
the solution is analytic for spheres and more generally solved using
numerical methods for tessellated shapes. Because the fields are nearly
static, the forward models are specializations of the Newtonian
potential measured from a distance, and therefore the inverse solution
is ambiguous, without the imposition of strong models. In practice, the
fields are measured at a few hundred sites about the upper hemisphere of
the head, in the presence of substantial environmental and biological
noise, and sampling rates and filtering protocols restrict the bandwidth
to about 100 Hz, recorded on the order of ten minutes. Magnetic
resonance images are used as anatomical basis sets on which to project
most of the present day functional solutions. We review the basics of
the acquisition systems and forward modeling, then focus on the inverse
modeling approaches used to process these large spatiotemporal data
matrices.
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What is 
Magnetoencephalography?

• The magnetic field generated by neural 
activity
– Measured in femtoTeslas, one billion times 

weaker than Earth’s magnetic field.
• Requires SQUID technology
• The magnetic equivalent to 

electroencephalography
– Complementary, “curl” vs. “divergence” of 

vector potential
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Magnetoencephalography: 
Commercial Arrays

CTF.com, Neuromag.com, 
4DNeuroimaging.com
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Large Array MEG Machines
• BTi built 37-channels in 1989.
• Today, BTi (4D), Neuromag, CTF 

have whole head arrays of 100s of 
channels.

• ~60 world-wide sites listed:
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Huntington Memorial Research Inst.
• CTF 68-Channel MEG, 64 Channel EEG Whole Head Arrays

Pasadena, CA
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Laboratoire de Neurosciences 
Cognitives & Imagerie Cerebrale

• CTF 151-Channel MEG, axial gradiometers, 64-128 EEG, 

Paris, France
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Minnesota Brain Sciences Center

• 4-D Magnes 3600, 248 Channels 
MEG, 64 Channels EEG

• Axial gradiometers, 5cm baseline
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LANL Superconducting 
Imaging Surface

The cryogenic column with new 
wire path design to improve 
cooling at ~4 Kelvins and SCSI 
connectors.

SQUID array inside super-
conducting imaging surface 
“helmet” (50 of 155 SQUIDs)

The LANL 
Whole-Head 
MEG System 
- version 3

Corian®-like support 
and mounting structure.
(DuPont/LANL Patent) 

Lead Superconducting 
“helmet”. (replacing 
Niobium)
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Combined EEG and MEG
• Typically up to 64 

channels over the 
head.

• MEG localization 
coils also added to 
locate head in array.

• Additional eye-blink 
channels.

BrainStorm
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Other Magnetic Field Arrays
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Neuromagnetic Example
• Temporal: Averaged 

event-related signals - high 
temporal resolution 
monitoring of neural 
activation

• Spatial: Snap-shot 
topographic maps of 
external magnetic fields

• Problem: find the sources 
in space and time 

Ctf.com
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Evoked Response Example
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Outline

• “Imaging” vs. “Modeling” of data
• Similar Physical Sciences
• Forward Modeling
• Inverse Modeling
• Simulated and Experimental Results
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MIND

Collaborators

• University of Southern California
– Professor Richard Leahy, Director, 

Signal & Image Processing Institute
• Cognitive Neuroscience & Brain 

Imaging Laboratory (CNRS), Paris
– Dr. Sylvain Baillet, BrainStorm

• Biophysics Group, LANL
• Huntington Memorial, Pasadena
• MIND Institute (UNM, UMN, VA)
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Tutorial 
Overview

IEEE Signal Processing
Magazine, Nov 2001

Baillet, Mosher, Leahy

See also web site at
University of 
Southern California:
neuroimage.usc.edu.
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Summer 2000, Los Alamos Fire!
We’re from the Government, and we’re here to help you!

You are here
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The Power of Imagery
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Spreading Depression
Registered to Anatomy
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Spatial Blurring

•Separation from source to measurement blurs image
•EEG/MEG are too far away: Total Spatial Loss
•“Images” are really low-order “models”
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Modeling and 
Image Reconstruction

Model 1 Model 2 BrainStorm

Occam’s Razor
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BrainSuite
• Surface 

extraction, with 
bias field and 
topological 
corrections.

• ~Automated 
scalp, skull, 
cortex 
tesselations

– Started at USC by 
David Shattuck, now at 
UCLA-LONI program 
(Art Toga).
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Outline

• “Imaging” vs. “Modeling” of data
• Similar Physical Sciences
• Forward Modeling
• Inverse Modeling
• Simulated and Experimental Results
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Ocean Magnetic Anomaly 
Measurements

Geopro.com
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Aeromagnetic Measurements

www.usgs.gov

• 50,000 - 60,000 
nanoTeslas 
nominal Earth 
Field.

• Brain is sub 
picoTesla.

• Measurement looks for differences from the static model.
• Airborne or satellite.
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Gravity Gradiometry Measurements

• Space Shuttle or Satellites measure micro-accelerations.
• Models help interpret changes in land masses below.

Venusian landscape www.nasa.gov



Dr. John C. Mosher, Los Alamos National Laboratory

Anomaly Mapping

• When combined with geographic data and fault lines, 
adds to the understanding in geophysical exploration.

• NanoTesla anomalies shown.

www.usgs.gov



Dr. John C. Mosher, Los Alamos National Laboratory

Magnetic Site Surveys

Argonne National Laboratory

Disposal Pits
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Thunderstorm Localization
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Measurements from a Distance
• In each case, the 

measurements are made 
at a distance, outside of 
a “forbidden zone.”
– Earth is a sixth-order 

gravitational multipole

• “Forbidden zones:” 
atmosphere, ocean, earth

• MEG/EEG: skull, scalp, 
air gap, Dewar thickness
– One meter from head, 

magnetic dipole
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Magnetic Imaging
• “SQUID Microscopes”
• Washington on the dollar 

bill.
• Density of ferromagnetic 

ink.
• Separation distance on 

the order of 100s of 
microns.

• MEG separation is 
centimeters.

Center for Superconductivity, Univ. Maryland
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Basic Source Model

• Buried or distant objects 
with anomalous 
gravitational or 
magnetic properties.

• Ambiguity between 
size, depth, and 
intensity.

• Models combined with 
other modalities.

www.usgs.gov
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Newtonian Potential

Distance
Mass

k

• Measured field is proportional to the mass divided 
by the distance.

• For “near” distances, replace mass with mass 
density and integrate over the volume of the mass.

∫ −
=

volume

'
)density(

)( dr
r'r
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Outline

• “Imaging” vs. “Modeling” of data
• Similar Physical Sciences
• Forward Modeling
• Inverse Modeling
• Simulated and Experimental Results
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Magnetic Vector Potential

• Integrate the total
current density flowing 
in the head, divided by 
its distance to the 
observation.

• Minimum distance is 
“forbidden zone.”

'
'
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BrainStorm
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Primary vs. Secondary Currents
• Picture primary current as a 

small battery inside the 
brain.

• Secondary or volume 
currents are the gradient 
currents to “complete the 
circuit.”

• Primary = NOT secondary
• All current fields must 

contain a primary 
component, not necessarily a 
gradient component (e.g., 
loop).

• Boundaries shape the 
volume currents.BrainStorm
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Cortical Constraints
• The putative source of 

E/MEG recordings is the 
gray matter. 

• Columnar organization of 
cortex and functional 
specialization on cortical 
surface lead to current 
dipole model to represent 
focal regions of activation. 

scalp
skull

cortex

activation site
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Primary Neural  Sources

• Primary currents are 
produced by current flow 
in apical dendrites in 
cortical pyramidal 
neurons.

• Millions of EPSPs
summed over ~ten 
milliseconds.

• “Macrocellular” vs. 
“microcellular.”

Ramon y Cajal 1888 from  
Hamalainen et al. 1993 
Reviews of Modern Physics
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Cortical Surface Current Density

• Individual EPSP generates 
20 fA-m primary current

• 10 nA-m observable 
suggests millions of 
EPSPs

• Surface current density 
about 100 nA/mm^2
(order of magnitude)

• e.g. 5mm x 5mm x 4mm 
thick cortical patch = 
10,000 nA-mm = 10 nA-m

Calculations from 
Hamalainen et al. 1993 
Reviews of Modern Physics
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Measured 
Electromagnetic Fields
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Primary vector potential

CURL: Homogeneous magnetic field

DIVERGENCE: Homogeneous electric potential
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MEG and EEG Forward Models
• Use quasistatic EM 

model. 
• Express models in 

terms of “primary” 
rather than “total” 
currents.

• Spherical head: closed 
form.

BrainStorm
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MEG Spherical Solution

• Spherical head, radial MEG measurement at r.
• Dipolar source at r’, moment q.
• Factored out are radii and conductivities.
• Non-radial direction also relatively simple in form.
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Overlapping Spheres
• Boundary element 

model requires 
upwards of 100s of 
megabytes.

• Overlapping spheres 
nearly as accurate, 
orders of magnitude 
faster.

• Both EEG and MEG.

Mingxiong Huang, UNM/VAMCBrainStorm
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General Boundary Problem

• Given primary current, what is the magnetic field?
• 3-D gradient currents map to 2-D surfaces as potentials.
• MEG general solution includes the general solution of 

EEG surface potentials.
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Fredholm Integral of 2nd Kind
• A specified primary current is the driving 

function V0(r)
• Potential on all surfaces must be solved 

inside and outside an integral.

• In general, no analytic solution.

)()()()(0 rrrr ′Ω′+≈ ∫∑ dVkVV
ijSij

ij
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Numerical Boundary 
Element Solutions

• General solution replaced with thousands of simpler 
equations.

• Problems of thin skull and scalp layers.

• True surfaces are 
replaced with 
geometric elements, 
typically planar 
triangles.
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Surface Tessellations
• Cortical surface, inner 

skull, outer skull, and 
scalp surfaces 
typically extracted.

• Example is 2,248 
planar triangles over 
inner skull surface, 
similarly scalp surface.

• Approximately 80 
Mbyte to generate.

BrainStorm
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BEM with Interpolation
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Lead Field Analysis
• EEG: connect a pair of 

electrodes to the skull, 
apply voltage  difference 
or current across the pair.

• The resulting currents 
fields are the “lead fields,” 
minimal energy currents.

• MEG: Use low-frequency 
alternating current in the 
gradiometer coils.

)(rLi
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Reciprocity
• Lead Field: For a given external field stimulus (potential 

or magnetic field), what are the resulting currents 
throughout the conducting volume -> L(r).

• Forward Model: For a given channel (EEG or MEG), 
what is the measurement m observed for a given primary 
current dipole, q(r).

• Answer: Measurement is simply an inner product 
between lead field and primary current dipole:

)()( rqrL ⋅= iim
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Linear Imaging
• Integration of lead field:

• Discrete putative source regions:

• Matrix form:

∫ ⋅=
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Linear Algebra Formulation

• Rows of G are samples of the lead fields, 
constrained to cortex. The dipoles are 
concatenated into j.

• Columns of G are forward field for a single 
dipole, sampled at the sensor sites.

Gjm =
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Data Model
• In addition to the measurement model, we 

must consider “noise:”
– SQUID and other acquisition system noise
– Environmental noise (far and near)
– “Brain noise” (other unmodeled brain activity)

nGjnmd +=+=
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Statistics of Noise
• We generally try to model the noise 

statistically. The most common 
assumptions (proven or not) are

• A more accurate noise model is often

where Hk is other unmodeled sources.

nCnn0n == )'(,)( EE

)( nHkGjd ++=
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Forward Problem: Gj + n
• Estimate noise statistics n accurately.
• Generate accurate channel model, G.

– Change of Boundaries
• Sphere, spheres, boundary elements, finite elements

– Numerical Accuracy of New Boundaries
• MEG sphere analytic, EEG sphere “Berg” parameters, linear approx with 

Galerkin error
– Speed of Calculation

• Interpolation schemes of Biomag 2000
– Noise Rejection distorts the lead fields and must be included in the lead 

field model.

• WITHOUT LOSS OF GENERALITY:
– WE ASSUME WE KNOW NOISE STATISTICS AND CHANNEL 

MODEL PRECISELY.
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Outline

• “Imaging” vs. “Modeling” of data
• Similar Physical Sciences
• Forward Modeling
• Inverse Modeling
• Simulated and Experimental Results
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Complete Knowledge

• If we know the source-free field 
normal to a closed bounding 
surface, then we know the 
source-free field everywhere.
– RF fields require two such 

surfaces

• Basis of “downward 
continuation” schemes.
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Incomplete Knowledge

• We know the field only on 
a helmet or cap, at discrete 
sites, with limited 
precision.

• Implicitly or explicitly, we 
must therefore:
– Extrapolate the field in the 

missing solid angle.
– Interpolate the field between 

the sensor points.
– Regularize the imprecision.

www.ctf.com



Dr. John C. Mosher, Los Alamos National Laboratory

Dissimilar in Missing Regions

Focal Distributed
BrainStorm
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Inward Continuation
• AKA deblurring, dura-

imaging.
• In theory, surface 

potentials or fields are 
uniquely 
transformable to 
potentials on cortical 
surface.

• Boosts high-frequencies and noise, must generally 
be interpolated and regularized.

Gevins, EEG Systems Lab
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Inverse Methods: Imaging
• Place current dipole at 

each element in cortical 
surface tessellation.

• Linear inverse problem to 
estimate dipole 
amplitudes.

• Hugely underdetermined 
(10,000 unknowns vs. 
100-300 measurements).

scalp
skull

cortex

activation site
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Minimum Norm Imaging 
Approach

• Solve:

• Choice of weight function:
– : minimum energy solution
– :                                                            : column-weighted 

min-norm
– where        also has the Laplacian

operator: LORETA 

2

2

2

2
min WjGjd λ+−

IW =
[ ]Naadiag /1,...,/1 1== normWW

BWW norm= B

• Let G represent the “transfer matrix” between 
dipole and measurement (the head model).
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Same:
Linear Minimum Mean Square

• Assume estimate is a linear transform on the 
data.

• Assume 2nd order statistics are known.
• Assume independence between noise and 

neural activity.
• Minimize the mean-square error.
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LMMS,  Also Known As:

• Linear Wiener-Hopf Solution
• “Weighted regularized minimum norm”
• MAP solution for Gaussian priors

– Strong model dependence on source prior Cj

dCGCj dj
1ˆ −= T

dCGGCGC vjj
1)( −+= TT
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Limited Resolution
• Consider regularized minimum-norm solution:

i

T
i v
du

j ∑
= +

=
M

i i

i

1
2

)(ˆ
λσ

σ

• Where                           is the  SVD.
• The basis images are a set of smooth functions 

and limit the resolution of this approach
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Linear Imaging 
(Minimum Norm)

Simulated Estimated BrainStorm
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Improving Image “Resolution”
• Introduce prior information in weighting 

function [Dale&Sereno 93, Liu et al 98]
• Iteratively reweighted min norm - FOCUSS 

[Gorodnitzky&George94]
• Non-quadratic penalty function, e.g.  

• [Jeffs&Leahy89 (p <1), Matsuura (p=1). 

eAybyy p
i ≤−= ∑ tosubjectmin

1
p

i
p
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Bayesian Imaging
• Assume the image is 

probabilistic.
– Gaussian prior, 

Gaussian noise: 
regularized min norm

• Non-Gaussian prior 
for ‘sparse” images 
[Phillips, Leahy & 
Mosher 97, Baillet & 
Garnero 98].

Phillips et al.
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Bayesian Methods 
• Statistical model:

)(
)()/(

)/(
yp

pyp
yp

ΘΘ
=Θ

• Unknowns Θ characterize solution:
� Θ an image

• Gaussian prior, Gaussian noise: regularized min norm
• Non-Gaussian prior for ‘sparse” images [Baillet & 

Garnero 98, Phillips,Leahy & Mosher 97].

� Θ a discrete set of sources
• intersection of spheres with cortical surface [Schmidt & 

George, 99]. 
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A Bayesian Model
l Stochastic model for source 

distribution based on 
assumption that activation is 
sparse and focal:
» Indicator process, x : binary 

process indicating which pixels 
are active

» Dynamic intensity process, z(t)
:  indicating intensity of active 
sites

» The dynamic source image is 
then y(t)=x.*z(t)

•Assume indicator and intensity process are independent.  Note: indicator 
process is time invariant - i.e. it indicates which sites are active at any time 
during the study.

p x,Z | B( )=
p B | x,Z( )p x,Z( )

p B( )

=
p B | x,Z( )p x( )p Z( )

p B( )

Bayes Theorem:
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A Sparsness Prior
Triangular Tessellation

+

Pixel of interest

Nine nearest pixels

Complete neighborhood

Q=1, α=0.2, β=0.20 Q=2, α=0.2, β=0.06 Q=3, α=0.2, β=0.017
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Bayesian Estimation Schemes

• Maximize function of posterior probability
– 1. Joint-MAP for activation sites and amplitudes
– 2. Marginalize out the amplitudes, MAP estimate of 

activation sites
– 3. Maximum posterior marginal on each site - gives 

minimum error rate identification of activated sites

• Use mean-field annealing to handle binary 
variables identifying active sites

• SHELVED: At the end of the day, solution still 
strongly dependent on the prior, difficult end-
user acceptance, long computation time.
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Spatial Pattern Suggests Dipole
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Dipolar Modeling
• 1950s 1st EEG 

dipolar modeling.
• Without anatomical 

images, 
interpretation of the 
dipolar solution was 
often quite limited.

• Today MRIs
routinely collected, 
allowing better 
interpretations.BESA.de
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Inverse Methods: Parametric

• Current dipole fitting
– Assume few current dipoles, unknown locations and 

moments
– Nonlinear least squares estimation problem - but now 

fewer parameters (5-6 per dipole)
– Non-convex problem - local minima can be avoided 

using signal subspace (MUSIC) methods

• Key limitation
– Can be difficult to interpret (dipoles not always in 

cortex)
– Current dipoles may not adequately represent more 

distributed activation (model uncertainty).
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Inverse Methods: Parametric
• Consider a “small” 

patch of activity on the 
cortical surface.

• Multipolar expansion 
collapses patch to an 
equivalent current 
dipole.

• Dipole not necessarily 
in the cortex.
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Multipolar Source Modeling
• Taylor series expansion of     

|r-r’|3 about rl for source 
confined to region G

• 1st-order multipole: dipole 
+ quadrupole

• Max rank of 11, (lower 
for sphere, radial 
orientation)
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Multipolar Current Patterns
• Planar square grid of dipoles
• SVD (PCA) of model matrix
• Orthogonal patterns ranked by singular values

1 2 3

4 5 6
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Multipolar Modeling
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Nonlinear Least-Squares
• Separate nonlinear location parameters from 

the quasilinear orientation and linear 
amplitude parameters (Golub and Pereya
1973).

• May need several dipoles.
• Nonconvex error function comprising 

possibly dozens of parameters.
• Need to consider temporal information to 

simplify problem.
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Dipolar Accuracy Studies
Cramer-Rao Lower Bounds

• Axial Gradiometer • Planar difference
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Single Time Slice Limitations
• Consider hundreds of sensors 

– limit -> Hilbert space (see geophysical inverse models)

• Forbidden zone limits rank of space ~50
• “Model” parameters should not exceed ~10% of 

independent observations
– Greater than 1/3, you have a transform (overmodeling)

• Each dipole has three nonlinear, 2-3 linear parameters
• Three – four dipoles maximum. Emphasize: Single 

Time Slice.
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Temporal Models
• Static data have the same limitations as 

geophysical data:
– Focal models suitable for mostly isolated 

sources.
– Multiple adjacent sources difficult to model.

• Unlike the Earth, brain has richness of 
temporal diversity to distinguish sources.

• Emphasize the “quasi” in quasistatic EM.
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Data Covariance
• Noise statistics:

• Data statistics:

– (assume noise and moments independent)

• We need (once again) to make some assumptions 
about the covariance (correlation) of the dipole 
moments.

nCnn0n == )'(,)( EE

nj CGCGddGjd +== TEE )'(,)(
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Data Covariance Estimation
• Need many time slices

• Estimate as sample covariance matrix

• Note: For low SNR, 

)](,),2(),1([ NdddD L≡

T
N DDCd 1

1ˆ
−=

nd CC ≅
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Data Matrices are Low Rank!
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Manifold Model
• We can reduce the data matrix to a 

relatively low rank basis set.

• We can build a model from a handful of 
dipoles.

• Set of dipoles represents a manifold.

T
sss VUD ∑≅

T
p JGGGD ],,,[ 21 L≅
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Subspace Comparisons
• SVD (or PCA) has extracted a “narrow” 

signal subspace from the data.
• Low-order dipole model generates a 

“narrow” model subspace.

• If we assume time series are linearly 
independent, then each Gi lies in the space 
spanned by Us
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Subspace Correlations
• Also known as:

– Canonical Correlations
– Principal Angles

• 1-D lines, angle between two 
lines
– aT/|a| * b/|b| 
– orth(a)T * orth(b)

• 2-D Planes in 3-D
– First angle always zero
– Second angle gives “distance”

• N-D hyperplanes
– svd(orth(A)T * orth(B))

a

b

A B
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Comparison Steps
• Singular value decomposition (SVD) of the 

data matrix

• Pick out signal subspace (significant 
singular values)

• Orthogonalize dipole model, UG1

• SVD of                 yields correlations.
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Subspace Intersections
• Consider 150 dimensional space
• Consider random rank 15 subspace vs. 

random rank 3 subspace
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Process
• Grid the putative source volume and form 

dipoles at each point.
• Compare the correlation between the 

dipolar model and the signal subspace for 
all grid points.

• From the best grid point, maximize the 
correlation using a conventional nonlinear 
optimizer.
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MUSIC
• Multiple Signal Characterization (MUSIC) introduced 

by R. Schmidt in 1979 for RADAR and SONAR.
• Adapted by Mosher et al. 1992 for temporally diverse 

neural signals
– “classical MUSIC.”

• Enhanced 1999 using Recursively Applied Projections 
for more automated processing and general models
– “RAP-MUSIC.”

• Generally considered a “scanning metric” since single 
dipolar sources can be extracted in simple 3-D scans of 
the brain.
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RAP-MUSIC
• Having found the best correlation between a 

model subspace and a signal subspace, how 
do we search for the 2nd peak? (Peak-
picking problem in multiple dimensions.)

• Solution: Project data and models away 
from the previous solution and maximize in 
the lower dimensional space.
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RAP-Slight bias, smaller variance
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Cortical Remapping
• Remap sources 

onto cortex: find a 
local patch of 
cortex whose 
activation explains 
the magnetic field 
associated with 
each source:
– weighted min norm 

imaging
– seeded region 

growing
Min-norm Region Growing

BrainStorm
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Preprocessing
averaging

noise removal
channel rejection

select time window

Fit multipolar sources to data:
current dipoles

1st order multipoles

Re-map each source onto 
cerebral cortex

- display activation sites and
associated time series

Multipolar Source Imaging
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Outline

• “Imaging” vs. “Modeling” of data
• Similar Physical Sciences
• Forward Modeling
• Inverse Modeling
• Simulated and Experimental Results



Dr. John C. Mosher, Los Alamos National Laboratory

Simulation Study
• 122 planar 

gradiometers
• 100k cortical triangles
• 3 distributed sources

BrainStorm
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Minimum Norm Solution

BrainStorm
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RAP MUSIC Solutions
• Sources found:

• 1) current dipole

• 2) magnetic dipole

• 3) Multipole

• Seeded region 
growing around 
source solution.

BrainStorm



Dr. John C. Mosher, Los Alamos National Laboratory

Constrained Topographies
• RAP-

MUSIC 
for 
solution 
approach.

• Various 
multipolar
models as 
source.

• Seeded 
region 
growing.

BrainStorm
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• 3 focal sources generated on human 
cortex (230,000 triangles). Each 
source 200mm2 monophasic or 
2x200mm2 (50% overlap) biphasic 
patch randomly positioned on upper 
cerebral cortex.

• RAP MUSIC - Monte Carlo investigation            
(3,600 source configurations) of effects of   
correlation threshold and SNR on source 
localization.

Monte Carlo Simulation
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“Dry” Calibration Phantoms

• At LANL, three-axis circular 
magnetic dipoles.

• From Neuromag, triangular-
shaped magnetic dipoles 
virtually identical to current 
dipoles.
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Human Skull Phantom

32 coaxial optically-isolated current dipole sources
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EEG and MEG Compatible

Ground truth from CT scan
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EEG Phantom Studies
• Colleagues at EGI, 

Incorporated, Eugene, 
OR.

• Novel 128 channel 
EEG array, placed 
simultaneously like a 
hairnet.

• USC Human skull 
phantom tested on EGI 
machines.
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Phantom Localization Errors
• Sources fit using R-

MUSIC, spherical 
and realistic BEM 
forward models

• Average error for 32 
dipoles using 
spherical head 
model: 4.1mm

• Average error for 32 
dipoles using BEM 
head model: 3.4mm

• EEG: 2x greater 
error
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EEG: Uncertain Skull Model
• Simulated differences 

in noise, array 
coverage, array 
density. 

• Experimental errors 
much larger than 
theory for EEG.

• Supposition is the 
imprecision in 
modeling the diploic
space.
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Epileptic Spike Data
• Patient surgical candidate with temporal 

lobe epilepsy
• MEG data acquired continuously for five 

minutes
• Data manually scanned for interictal spike 

activity and extracted as one second data 
segments
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Interictal Spike Processing

BrainStorm
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Spike Activity Results

• Two locations adjacent, 
in unsuspected parietal 
region.

• Confirmed with depth 
electrode.

BrainStorm
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Research Software
• “OEM” software supplied with the 

commercial EEG and MEG instruments.
• Third-party (BESA, BrainVoyager, EMSI, 

ASA, Curry).
• Research software from collaborators:

– University of Southern California/CNRS
– Los Alamos Biophysics Group
– MGH-NMR
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USC BrainStorm

• Matlab research software combining parametric 
and imaging solutions into a visualization suite.

• http://neuroimage.usc.edu
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BrainSuite
• Surface 

extraction, with 
bias field and 
topological 
corrections.

• ~Automated 
scalp, skull, 
cortex 
tesselations

– Started at USC by 
David Shattuck, now at 
UCLA-LONI program 
(Art Toga).
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Summary
• Linear imaging 

– Too many parameters for modeling; rather, transforms
– Too few underlying data parameters for imaging

• Dipolar (multipolar) models
– A few parameters for hypothesis testing
– Represent regional sources

• Cortical remapping allow physiological 
interpretation of parametric fits.

• SEE: http://neuroimage.usc.edu
– Publications
– BrainStorm software
– BrainSuite for surface extraction, tesselation
– Phantom Data
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Other Topics 
• Preprocessing – artefact rejection
• Array calibration – perturbation studies

– Phantom studies
• Cramer-Rao theoretical error, Monte Carlos, 

Bootstrapping.
• Colored noise handling

– “Pre-whitening” demands accuracy
– Necessary for gradiometers with magnetometers, 

combined EEG & MEG
– “sources not of interest”
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